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Abstract. This paper deals with the apparent superluminal propagation of electromagnetic pulses in a lin-
ear dispersive medium. One specifically examines the possibility that the pulse leaving the medium may be
nearly identical to the incident one (low distortion) and in significant advance of it (strongly negative group-
delays). Favourable conditions are obtained in a dilute medium where the required anomalous dispersion
originates in an ensemble of narrow absorption or gain lines. Analytical expressions of the advancement
of the pulse centre-of-gravity and of the lowest order distortion are established from the transfer-function
of the medium. The experiments already achieved with arrangements involving a single absorption-line or
a gain-doublet are analysed in detail and compared. The considerable difficulties to overcome in order to
attain advancements comparable to the pulse width without important distortion are pointed out. New
and promising schemes involving a narrow dip in a gain profile or absorption-doublets are proposed.

PACS. 42.25.Bs Wave propagation, transmission and absorption – 42.50.Gy Effects of atomic coherence
on propagation, absorption, and amplification of light – 03.65.Sq Semiclassical theories and applications

1 Introduction

It is well-known that the group velocity of an electromag-
netic pulse can be negative in regions of anomalous dis-
persion [1]. For a long time, due to an incorrect reference
to the causality principle and the theory of special rela-
tivity, it has been considered that such velocities have no
physical significance and this analysis can still be found in
classical textbooks [2]. Indeed it is clear that any informa-
tion cannot be conveyed at a negative velocity (it would be
received before having been emitted). This remark also ap-
plies to any localised feature in an electromagnetic pulse.
One cannot however exclude the possibility that ideally
smooth pulses may propagate in conditions such that the
profile of the output pulse be nearly identical to that of
the incident pulse and in advance of it. The existence of
the phenomenon has been predicted more than 30 years
ago by Garrett and McCumber [3] in the particular case of
Gaussian pulses propagating in a resonant absorber and
it has been experimentally evidenced in various condi-
tions [4–9]. Its explanation lies in the fact that a given
point of the output profile is not a direct reflection of the
homologous point of the input profile but results from the
action of the medium on all the earlier part of the pulse.
From this viewpoint, it is irrelevant to make a direct cor-
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respondence between the maximums of the input and out-
put pulses and the widespread statement that the peak of
the pulse exits the medium before it even enters it may
be confusing. As a matter of fact the superluminal prop-
agation only concerns the overall profile of the pulse. The
phenomenon is intriguing but not abnormal. In a spectral
instead of temporal description, it exclusively results from
interference between the different frequency components
of the pulse in an anomalous dispersion region, as this
occurs in a normal dispersion region.

Strongly negative group-delays, that is pulse advance-
ments large with respect to the luminal propagation time,
are easily obtained in media with narrow absorption or
gain lines [4–10]. The experimental arrangements used up
to now or in progress involve either a single absorption-
line [4–6] or a gain doublet [7–9]. The challenge is to at-
tain advancements comparable to the pulse-width with
a low level of pulse-distortion. Our aim is here to study
this problem in a frame as general as possible. In Sec-
tion 2, we give the expression of the transfer function
of a medium whose dispersion originates from an ensem-
ble of narrow absorption or gain lines. General properties
of the pulse advancement and of the lowest-order pulse-
distortion are derived from this expression. In Sections 3
and 4, the previous results are applied to the analysis
of the experiments already achieved or in progress with
the single absorption-line and gain-doublet arrangements.
New and promising schemes involving a narrow dip in a
gain profile or absorption-doublets are proposed in Sec-
tion 5. We conclude in Section 6 by summarising the main



126 The European Physical Journal D

results of our work and stressing the severe constraints to
the observation of significant pulse advancements.

2 General analysis

To be definite, we consider an electromagnetic pulse prop-
agating in the z-direction in a medium of thickness L, with
an electric field polarised according to the x-direction. The
x-component of the field is written

Ex(z, t′) = Re[E(z, t′) exp(iω0t
′)] (1)

where t′ is the retarded time (t′ = t − z/c in a dilute
medium), ω0 is a reference frequency1 equal or nearly
equal to the mean frequency of the incident pulse (here-
after denoted the working frequency) and E(z, t′) is the
complex envelope of the pulse. Equation (1) implicitly as-
sumes that the envelope E(z, t′) slowly varies at the scale
of 1/ω0 in time and of c/ω0 in distance [11] or, equiva-
lently, that its Fourier spectrum Ê(z, Ω) is concentrated
in a narrow region close to the zero frequency (|Ω| � ω0).
From the viewpoint of the linear systems theory [12,13],
the action of the medium is entirely characterised by the
impulse response h(t′) linking the envelopes of the input
and output pulses or by the transfer function H(Ω) link-
ing their Fourier transforms

E(L, t′) = h(t′) ⊗ E(0, t′) (2)

Ê(L, Ω) = H(Ω) Ê(0, Ω) (3)

with

h(t′) =
∫ +∞

−∞
H(Ω) exp(iΩt′)

dΩ

2π
· (4)

Quite generally the transfer function may be written

H(Ω) = exp [F (Ω) + iϕ(Ω)] = exp [Γ (Ω)] = exp [iΦ(Ω)]
(5)

where F (Ω) is the (real) amplitude gain-factor, ϕ(Ω) the
(real) phase-advancement, Γ (Ω) the complex gain-factor
and Φ(Ω) the complex phase. |H(Ω)| = exp[F (Ω)] is obvi-
ously the amplitude gain. For a medium whose dispersion
originates from an ensemble of m homogeneously broad-
ened lines, the complex gain-factor simply reads

Γ (Ω) =
m∑

q=1

gqL/2
1 + iΩ/γq + iδq/γq

(6)

with δq = (ω0 − ωq) and where ωq, gq and γq are re-
spectively the frequency, the relaxation rate and the in-
tensity gain coefficient of the qth line. For an absorption
line, gq = −αq, where αq is the intensity absorption coeffi-
cient. Equation (6) is obtained by assuming that all the δq

and γq are small with respect to ω0 and the slowly varying
envelope approximation requires that

∑m
q=1 |gq| � ω0/c.

1 All the frequencies introduced in this paper are angular
frequencies.

All the previous assumptions and approximations are well
verified in every realistic experiment.

All the poles of Γ (p), obtained by substituting the
complex variable p to iΩ in Γ (Ω), have a negative real
part and it is the same for H(p) and 1/H(p). Otherwise
said, Γ (p) is the transfer function of a causal system and
the medium is a minimum phase system [12,13]. The im-
pulse response h(t′) of the medium is thus strictly zero for
t′ < 0 and exactly starts at the (retarded) time t′ = 0.
This means that any singularity in the incident pulse will
generate a transient (wiggle) whose front will propagate
at the luminal velocity, in agreement with the forerunners
theory of Sommerfeld and Brillouin [1]. More precisely,
the short-term behaviour of the impulse response is asso-
ciated to the high frequency components of the transfer
function (Ω → ±∞) and, expanding H(Ω) at the first
order in 1/Ω, we easily get

h(t′) ≈ δ(t′) + U(t′)
m∑

q=1

gqLγq

2
(7)

where δ(t′) and U(t′) are respectively the Dirac and unit
step functions. Equation (7) obviously supports the gen-
eral analysis and, besides, shows that a first order disconti-
nuity will propagate while conserving its initial amplitude.

Two properties, which are not specific of the particular
form of the transfer function, deserve a mention. The first
one is quite general and is related to the (complex) area
of the pulse-envelope [14]. By means of equation (3), the
envelope of the output pulse may be written∫ +∞

−∞
E(L, t′) dt′ = Ê(L, 0) = H(0)Ê(0, 0)

= H(0)
∫ +∞

−∞
E(0, t′) dt′. (8)

Except for a constant factor, there is conservation of the
pulse area whatever the pulse profile is. The second law
only concerns the (causal) passive media. The conserva-
tion of the energy then results in the inequality∫ t0

−∞
|E(L, t′)|2 dt′ ≤

∫ t0

−∞
|E(0, t′)|2 dt′ (9)

valid for any t0. Note however that, even in a purely dis-
sipative medium, nothing prevents the instantaneous am-
plitude |E(L, t′)| of the output field to be larger and even
much larger [15] than |E(0, t′)| at the same (retarded)
time.

2.1 Group-velocity approximation
and pulse-advancement

Following the method used to define the group velocity [1],
we expand the complex phase Φ(Ω) to the first order in
Ω and we get

H(Ω) ≈ H(0) exp [iΩ ∆t(0)]
≈ H(0) exp {iΩ [A(0) + iB(0)]} (10)
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where ∆t = dΦ/dΩ, A = dϕ/dΩ and B = −dF/dΩ.
The multiplication by exp(iΩ ∆t) of the Fourier spectrum
corresponds to a time-shift ∆t for the signal. The envelope
of the output pulse thus reads

E(L, t′) ≈ H(0)E [0, t′ + A(0) + iB(0)] . (11)

In order to facilitate further discussions, we now choose a
reference frequency ω0 attached to the dispersion region of
the medium and we denote Ω0 the deviation of the work-
ing frequency from ω0. The complex time-shift then reads
∆t = A(Ω0) + iB(Ω0). In our retarded time picture, its
real part A(Ω0) is the advancement of the output pulse
on a pulse having covered the same distance at the lumi-
nal velocity. Since ϕ(±∞) = 0,

∫ +∞
−∞ A(Ω0)dΩ0 = 0. This

result, common to every minimum phase system, ensures
that there exist spectral regions where A is actually posi-
tive. One can easily verify that A = L/c−L/vg, where vg

is the group velocity obtained by the standard procedure.
In the experiments considered here [4,5,7–10], the group-
delay is strongly negative and A is nearly equal to the
absolute advancement −L/vg. Due to the causal charac-
ter of the complex gain-factor Γ (Ω), the gain factor F (Ω)
and the phase ϕ(Ω) are a pair of Hilbert transforms and
it is the same for their derivatives with respect to the fre-
quency [16]. We then get

A(Ω0) = − 1
π

P

∫ +∞

−∞

dF/dΩ

Ω0 − Ω
dΩ (12)

and integration per parts gives

A(Ω0) =
1
π

P

∫ +∞

−∞

F (Ω) − F (Ω0)
(Ω − Ω0)2

dΩ. (13)

Equation (13) shows that only the spectral regions where
F (Ω) > F (Ω0) contribute to the pulse-advancement
whereas the regions where F (Ω) < F (Ω0) reduce this ad-
vancement. The largest advancements are expected when
the gain of the medium presents a narrow minimum
(preferably an absolute minimum) at the working fre-
quency. Equations looking similar to equations (12, 13)
have been obtained by Bolda et al. [17]. Note however that
the integral given in their equation (17) diverges (dou-
ble pole on the real axis), except when κ(ω) is strictly
equal to zero (small is not sufficient), and that the term
(dκ/dω)/(ω′ − ω) in their equation (20) is superfluous
since it gives a zero contribution to the integral.

The imaginary part B(Ω0) of the time shift ∆t is
detrimental to the observation of negative group veloc-
ity propagation. Associated to the 1st order variations of
the medium gain with the frequency, its main effect is
to shift the mean frequency of the pulse towards spectral
regions of larger gain (or of lower absorption) and then
to change the pulse-velocity during the propagation. By
this means, it has even been possible to observe a tran-
sition from superluminal to subluminal velocity [6]. Ex-
cept in the remarkable case of Gaussian pulses, an imagi-
nary time-shift also results in a dramatic reshaping of the
pulse-envelopes. Giving only two examples, a shift equal

to iπ/2 transforms 1/ cosh(t) (sech-pulse) into 1/ sinh(t)
and a double-humped profile as t2 exp(−t2) is changed into
a flat-topped one by a shift equal to i. In order to avoid any
frequency-shift and pulse-reshaping (at least at this order
of approximation), it is thus necessary that B(Ω0) cancels.
This condition is automatically fulfilled when the working
frequency coincides with a minimum of the medium gain
(dF/dΩ = 0 for Ω = Ω0), that is precisely when large
(real) pulse-advancements A are expected. Taking the fre-
quency of minimum gain as reference frequency (i.e. again
Ω0 = 0), we then get

E(L, t′) ≈ H(0)E(0, t′ + A) (14)

with

A = P

∫ +∞

−∞

F (Ω) − F (0)
πΩ2

dΩ. (15)

In these conditions, the advancement A has a very simple
interpretation valid beyond the 1st order or group-velocity
approximation. It may indeed be identified to the advance-
ment of the centre of gravity of the pulse-envelope. Quite
generally, the centre of gravity of a signal f(t) of non-zero
area may be defined by

〈t〉 =

∫ +∞
−∞ t f(t) dt∫ +∞
−∞ f(t) dt

=
i

f̂(0)

(
df̂

dω

)
ω=0

(16)

where the last expression is derived from the so-called mo-
ment theorem (see for example pp. 16-17 in [13]). Apply-
ing this result to E(L, t′) and taking equations (3, 5) into
account, we get

〈t′(L)〉 = i
(

dF

dΩ

)
Ω=0

−
(

dϕ

dΩ

)
Ω=0

+
i

Ê(0, 0)

(
dÊ(0, Ω)

dΩ

)
Ω=0

= −A + 〈t′(0)〉 . (17)

A actually appears as the advancement of the centre of
gravity of the envelope of the output pulse over that of
the incident pulse. This result is valid whatever the dis-
tortion is. It is especially useful when the envelope of the
incident pulse (and thus of the output pulse) is purely real
and provides in particular a good check of the numerical
simulations.

Coming back to the group-velocity approximation (see
Eq. (14)), we remark that it is quite possible to build a
dispersive medium such that F (0) = 0 and H(0) = 1 (see
the example given in Sect. 5). However, in all the experi-
ments achieved up to now, the amplitudes of the input and
output pulses were different and the difference was com-
pensated by an external broadband (i.e. non-dispersive)
amplification or attenuation. The corresponding device
should be included in the system under consideration.
The gain factor, transfer function and impulse response
of the complete system (henceforth the system) are re-
spectively F ′(Ω) = F (Ω) − F (0), H ′(Ω) = H(Ω)/H(0)
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and h′(t′) = h(t′)/H(0). In the group velocity approxi-
mation, H ′(Ω) ≈ exp(iΩA) and the system delivers an
output signal

E′(L, t′) ≈ E(0, t′ + A). (18)

2.2 Pulse-distortion

The propagation at the group velocity is always accom-
panied by some distortion, even when the pulse is ide-
ally smooth. The constraints to satisfy for a low-distortion
propagation are obviously more severe when the group ve-
locity is negative. Such group velocities are attained when
the width of the anomalous dispersion region is small com-
pared to the mean pulse frequency and the first order cal-
culation leading to the concept of group velocity is valid
only if the spectral width of the pulse is itself narrow com-
pared to the former one. It is evidently essential to check
the consistency of this calculation by examining the effect
of the higher order terms.

Although it is not indispensable, we now assume that
the distribution of the lines given by equation (6) is sym-
metric with respect to the frequency ω0 of the minimum
of gain, to which is tuned the working frequency. This as-
sumption results in some simplification of the calculations
without significant loss of generality. The transfer function
of the system is then such that H ′(−Ω) = H ′∗(Ω) and its
impulse response h′(t′) is purely real. The advantage of
such an arrangement is that, for reasons of symmetry, the
pulse-advancement is extremum at the frequency where
the 1st order distortion cancels.

According to the previous assumption, H ′(Ω) can be
expanded in a power series of iΩ with real coefficients
or, equivalently, in a power series of iΩA with both real
and dimensionless coefficients. At this step it is natural to
refer the advancement A to a time τp characterising the
duration of the pulse. In the case of bell-shaped pulses
considered hereafter, we define τp as the half width of the
amplitude profile of the pulse at 1/e of its maximum. For a
Gaussian pulse, τp = (2 ln 2)−1/2τI

p = 0.85τI
p , where τI

p is
the full width at half-maximum (FWHM) of the intensity
profile. Introducing the relative advancement a = A/τp,
the dimensionless frequency u = Ωτp and taking into ac-
count the first order result, the transfer function H ′(u)
can be expanded under the form

H ′(u) = eiua

[
1 +

∞∑
n=2

Dn (iua)n

]
(19)

where D2 < 0 (minimum of gain). In the time domain,
the multiplication by iu results in a time-derivative with
respect to the dimensionless time θ = t′/τp and the signal
delivered by the system is then

E′(L, θ) ≈ E(0, θ+a)+
∞∑

n=2

Dnan dn

dθn
[E(0, θ + a)] . (20)

The distortion of the pulse is obviously given by the series
in equations (19, 20).

Quite generally the distortion can be characterised by
its uniform norm D∞ or its root-mean-square Drms

D∞ =
‖E′(L, θ) − E(0, θ + a)‖∞

‖E(0, θ)‖∞
(21)

Drms =

[∫ +∞
−∞ |E′(L, θ) − E(0, θ + a)|2 dθ∫ +∞

−∞ |E(0, θ)|2 dθ

] 1
2

· (22)

Owing to the Parseval theorem, Drms can also be directly
expressed in terms of the transfer function

Drms =


∫ +∞
−∞

∣∣∣[H ′(u) − eiua
]
Ê(0, u)

∣∣∣2 du∫ +∞
−∞

∣∣∣Ê(0, u)
∣∣∣2 du


1
2

· (23)

Drms is only slightly smaller than D∞ (factor close to
unity) when the distortion is regularly distributed in the
pulse profile. Significant deviations from this rule indicate
either a localised defect or an extended distortion.

Except in particular cases [18], the convergence of
the series in equations (19, 20) has not been analytically
proved but numerical simulations show that a good ap-
proximation of the exact result is often given by restrict-
ing the series to its lowest order term (n = 2), if it is small
enough. Equations (19, 20) then read

H ′(u) ≈ eiua
(
1 +

ε

2
u2
)

(24)

E′(L, θ) ≈ E(0, θ + a) − ε

2
d 2

dθ2
[E(0, θ + a)] (25)

with ε = −2D2a
2 > 0. If |D2| can be made small

enough, one may expect to observe significant advance-
ment (a ∼ 1) with low distortion (ε � 1).

Although the propagation at a negative group velocity
is not specific to Gaussian pulses, these pulses are conve-
nient for simple calculations. Putting E(0, θ) = exp

(−θ2
)

in equation (25) and doing some transformations valid at
the 1st order in ε, we get

E′(L, θ) ≈ (1 + ε) exp
[−(θ + a)2(1 + ε)2

]
. (26)

Equations (21, 22) then gives D∞ = ε and Drms = ε
√

3/2.
For this particular pulse-shape and at this order of ap-
proximation, the alteration of the pulse simply consists
of a narrowing of the amplitude profile by the factor
β = (1 + ε) and its magnification by the same factor,
in agreement with the conservation of the envelope area
(Eq. (8)). The intensity profile |E′(L, θ)|2 is also narrowed
by the factor β but magnified by the factor β2. The pulse-
narrowing results in different advancements on the fall and
the rise of the pulse, respectively A↓ = A + τa − τa/β and
A↑ = A − τa + τa/β , where τa indicates the half-width
of the pulse at the arbitrary amplitude or intensity at
which A↓ and A↑ are measured. The difference (A↓− A↑)
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Fig. 1. Superluminal propagation of a Gaussian pulse in a
case of modest advancement and low distortion. The intensity-
profile of the output pulse (dotted line) is derived from equa-
tion (24) with a = 0.03 and ε = 0.01. The time unit is τp,
the half width at 1/e of the amplitude-profile of the incident
pulse. The intensity-profile of the incident pulse, delayed of
the luminal propagation time, is given for reference (full line).
The inserts show the difference of the advancements on the rise
and on the fall of the pulse (a↑ = A↑/τp and a↓ = A↓/τp). The
values given to a and ε fit the experiment of Dogariu et al. [8].

is suitably characterised by the ratio

ξ =
A↓ − A↑
A↓ + A↑

≈ A↓ − A↑
2A

=
ετa

aτp
· (27)

ξ may take appreciable values when the relative advance-
ment a is modest, even if the distortion is low. The experi-
ment of Dogariu et al. with near Gaussian pulses provides
an example of such a situation (see Fig. 6 in [8]). A↓ and
A↑ are roughly in the proportion of 3 to 2 (ξ ≈ 0.2) with
A = 63 ns, τa = 1.20 µs, τI

p = 2.40 µs and τp = 2.04 µs,
that is a = 0.03. By means of equation (27) it is possi-
ble to estimate the distortion parameter (ε ≈ 0.01) with-
out knowing the details of the experiment (examined in
Sect. 4). As shown Figure 1, the difference between the ad-
vancements A↓ and A↑ observed by these authors is well
retrieved on the analytic intensity-profile derived from our
equation (26).

The previous calculations of the pulse-distortion im-
plicitly assume that the pulse envelope is analytic and,
in particular, that it has neither beginning nor end. As a
matter of fact, a realistic pulse is time-limited and thus
non-analytic. The unavoidable singularities associated to
the beginning and the end of the pulse will be respon-
sible of the appearance of transients patterns or wiggles
superimposed to the slowly varying part of the envelope.
These patterns are identified with or clearly related to
the forerunners of Sommerfeld and Brillouin [1] and their
wavefront propagates at the luminal velocity (see Eq. (7)).
The general study of the phenomenon is beyond the scope
of the present paper. It is sufficient to note here that, in
well-conditioned experiments, its contribution to the dis-
tortion can be maintained at a very low level by lengthen-
ing the pulse pedestal and by eliminating the lowest order
discontinuities, which originate the largest wiggles [18].

3 Single absorption-line arrangement

The single absorption-line arrangement provides the sim-
plest and probably the most efficient way to obtain
strongly negative group velocities. Fixing the reference fre-
quency ω0 at the resonance (absolute minimum of gain),
the complex gain factor takes the simple form

Γ (Ω) = F (Ω) + iϕ(Ω) = − Z

1 + iΩ/γ

= − Z

1 + Ω2/γ2
+

iZΩ/γ

1 + Ω2/γ2
(28)

where Z = αL/2 is the optical thickness on resonance for
the field, α being the corresponding absorption coefficient
for the intensity. The advancement A and the imaginary
advancement B (responsible of a 1st order distortion) are
immediately derived from equation (28)

A(Ω0) =
Z(1 − Ω2

0/γ2)
γ(1 + Ω2

0/γ2)2
B(Ω0) = − 2ZΩ0

γ2(1 + Ω2
0/γ2)2

·
(29)

As expected, B = 0 on resonance and the real advance-
ment A is then maximum (see Fig. 2). According to our
discussion of equation (13), this simply results from the
fact that all the frequencies then contribute to the ad-
vancement. Let us remark that the advancement A on
resonance is much larger than the delays (negative ad-
vancements) occurring in the wings of the line and cancels
out when |Ω0| = γ. In these latter points, corresponding to
the half-width at half-maximum of the line profile, there
is a transition from a superluminal to a subluminal group
velocity [6,19].

When the choice of the working frequency is opti-
mal (Ω0 = 0), A = Z/γ and H(0) = e−Z . In the ex-
periments, an external broadband (non-dispersive) am-
plifier of amplitude-gain eZ compensates the medium
absorption. Introducing again the dimensionless quanti-
ties a = A/τp and u = Ωτp, the transfer function of the
complete system may be written

H ′(u) = exp
(

iua

1 + iua/Z

)
= eiua exp

(−(iua)2/Z
1 + iua/Z

)
·

(30)
In the low distortion limit, the transfer function and
the output signal take the general form given by equa-
tions (24, 25) with ε = 2a2/Z. Coming back to the original
variables, ε = 2Z/γ2τ2

p and the condition of low distor-
tion reads τp � √

2Z/γ. Significant pulse-advancements
are only obtained for large optical thickness Z and the
previous condition is more severe than that usually con-
sidered (τp � 1/γ). Conversely, for a given relative ad-
vancement a, the distortion can be made as low as wanted
by taking a large enough optical thickness. For compar-
ison with other arrangements, it is convenient to relate
the relative advancement a, the distortion parameter ε
(assumed to be small) and the peak value P of the am-
plitude gain |H ′(u)| of the system. In the present case,
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Fig. 2. Single absorption-line arrangement. Dependence of the
effective advancement A (full line), of the imaginary advance-
ment B (dashed line) and of the medium gain-factor F (dotted
line) on the frequency deviation from resonance. The advance-
ments, gain factor and frequency deviation are normalised to
Z/γ, Z and γ respectively.

this peak value, attained for Ω → ±∞, is obviously eZ

and we get

P = exp
(

2a2

ε

)
. (31)

Similar expressions will be obtained with the gain-doublet
arrangement (Sect. 4) when the 2nd order distortion pre-
vails. A preliminary conclusion is that significant advance-
ments (a ∼ 1) with low distortion (ε � 1) can be attained
only in systems with large peak gain.

The first experimental evidence of significant pulse-
advancements associated to a negative group velocity has
been achieved by Chu and Wong [4]. They used 9.5 or
76 µm thick samples of epitaxially grown GaP:N, a pulsed
dye laser tuned in the vicinity of the well isolated bound
A-exciton line at 534 nm and detection involving a 2nd
order correlation technique. The parameters of a typi-
cal experiment (see Figs. 2 and 3a in [4] and [20,21])
are Z ≈ 2.85 (P ≈ 17), γ ≈ 1.23 × 1011 Rad s−1

(1/γ = 7.8 ps), τI
p = 34 ps and τp ≈ 29 ps (value es-

timated by assimilating the pulses to Gaussian ones). A
pulse-advancement A ≈ 22 ps, in good agreement with
the relation A = Z/γ, was observed but this consider-
able advancement (a ≈ 0.76) is accompanied by a strong
narrowing of the pulse [20,21], roughly by a factor 1.8.
The condition of low distortion is indeed poorly fulfilled
(ε ≈ 0.41). Numerical simulations with the previous pa-
rameters show that, besides the above-mentioned narrow-
ing, the pulse is affected by an appreciable asymmetry,
which could not be revealed by the detection technique
used in the experiment [20].

The pioneering work of Chu and Wong urged us to
undertake experiments involving a real-time detection of
the true shape of the field envelope and complying with
the conditions of low distortion. Our experiments [5] were
achieved on a low-pressure gas at a wavelength λ ≈ 3 mm
where several molecules present well-isolated strong rota-
tion lines. The gas pressure ranged from 7 to 30 Pa, a
domain where the linewidth γ is mainly determined by
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Fig. 3. Experimental evidence of propagation at a negative
group velocity in a resonant molecular absorber [5]. The pulse
(A) having propagated in the gas seems to arrive about 2 µs
earlier than the pulse (O) having covered the same distance
(L = 24 m) in the empty cell. The detection-chain gains used
to obtain the pulses (A) and (O) are in a ratio of about 190.

the molecular collisions and is proportional to the pres-
sure. The gas was enclosed in a 24 m-long cell and it was
proceeded to a direct comparison of the field envelope of
the output pulses obtained with and without gas. The en-
velope of the incident field was generated from a signal of
the form (1 + cosσt) for −π/σ < t < +π/σ (0 elsewhere),
suitably reshaped and lengthened in its pedestal in order
to eliminate the strong wiggles which would result from
the discontinuities of the 2nd derivative at t = ±π/σ. Fig-
ure 3, obtained from the original data of [5], shows the re-
sults of a typical experiment. The parameters are Z ≈ 5.25
(P ≈ 190), 1/γ ≈ 0.35 µs and τp ≈ 4.8 µs. The observed
advancement A ≈ 2.0 µs is much larger than the luminal
propagation time (L/c = 80 ns) and in good agreement
with its theoretical value (Z/γ = 1.84 µs). The relative
advancement a is significant (a = 0.42) and the distortion
parameter ε, inferred from Z and a, is small (ε = 0.067).
The distortion is actually low. The difference between the
advancements A↓ and A↑ at half-maximum on the fall and
the rise of the pulse is even smaller than it would be in the
case of a Gaussian pulse of same duration τp, with ξ ≈ 5%
instead of 14% (value derived from Eq. (27)). This simply
results from the particular shape of the incident pulse. Its
main part is indeed nearly sinusoidal and is then negligi-
bly distorted owing to the system linearity, the distortion
being more important in the non-sinusoidal wings. The
envelope (A) is however slightly distorted in its central
part by wiggles, which originate from very small discon-
tinuities in the amplitude-profile of the incident pulse. As
it happens with piecewise function-generators, such a dis-
continuity occurs in particular near the maximum of the
modulation signal and is responsible of the most visible
wiggle. Its location below the maximum of the pulse (O)
having propagated in vacuum confirms that the propaga-
tion of localised defects is actually luminal.

In agreement with the theoretical analysis (see
Eq. (31)), the significant pulse-advancement with low
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distortion obtained in the previous experiment is paid at
the price of a large absorption of the medium at the mean
frequency of the pulse or, equivalently, of a large peak
gain P of the complete system. Conversely, more modest
advancements can be attained in nearly transparent me-
dia. For example the result shown Figure 1 (a = 0.03,
ε = 0.01) would be obtained in a medium of amplitude-
gain exp(2a2/ε) ≈ 0.835, corresponding to an intensity
transmittance as high as 70%.

To close this section, let us mention that very large
anomalous dispersions have been recently demonstrated
at optical wavelength in a coherently prepared atomic
vapour [10]. The dispersion originates from an electromag-
netically induced absorption of subnatural width. This ar-
rangement provides the opportunity of observing negative
group velocity propagation with long laser-pulses.

4 Gain-doublet arrangement

The proposal of exploiting the anomalous dispersion oc-
curring between two gain-lines in order to observe nega-
tive group velocity propagation has been made for the first
time by Steinberg and Chiao [22]. Note however that the
model developed by these authors is not very realistic. The
refractive index of the atomic vapour is indeed assumed
to be purely real (no gain) whereas the gain frequency-
dependence is in fact the main cause of pulse-distortion in
the experiments.

Fixing the reference frequency ω0 halfway between the
two gain-lines, the complex gain factor of the medium
reads

Γ (Ω) = F (Ω) + iϕ(Ω) =
G

1 + i∆ + iΩ/γ
+

G

1 − i∆ + iΩ/γ
(32)

where G = gL/2 > 0 is the amplitude-gain factor of each
line on resonance and ∆ = (ω2 − ω1)/2γ > 0. The gain-
factor F is obviously an even function of Ω and it is easily
shown that a gain-doublet appears as soon as the split-
ting parameter ∆ exceeds 1/

√
3. The two maximums oc-

cur at Ω = ±Ωmax, with

Ωmax = γ
(
2∆
√

1 + ∆2 − 1 − ∆2
) 1

2
. (33)

The amplitudes of the central minimum and of the maxi-
mums are respectively

Fmin = F (0) =
2G

1 + ∆2
, Fmax =

G

2∆

(
∆ +

√
1 + ∆2

)
.

(34)
Figure 4 shows the frequency-dependence of the gain fac-
tor F , of the effective advancement A and of the imagi-
nary advancement B for two representative values of ∆,
respectively

√
3 and 4. As expected, B cancels and A

is extremum at the central frequency. The extremum of
A is a maximum (as in the single absorption-line case)
for ∆ =

√
3 but is a relative minimum for ∆ = 4. Let

us remark that in both cases the advancement is much
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Fig. 4. Gain doublet arrangement with (a) ∆ =
√

3 and
(b) ∆ = 4. Dependence of the effective advancement A (full
line), of the imaginary advancement B (dashed line) and of the
medium gain-factor F (dotted line) on the deviation from the
reference frequency. The advancements, gain factor and fre-
quency deviation are normalised to G/γ, G and γ respectively.

smaller than the delays occurring in the vicinity of the
two maximums of gain. When the working frequency is
tuned to the reference frequency, the pulse advancement
takes the simple form

A =
(

dϕ

dΩ

)
Ω=0

=
2G

γ

∆2 − 1
(∆2 + 1)2

· (35)

There is actually an advancement when ∆ > 1 and, if G
and γ are fixed, the advancement is maximum for ∆ =

√
3

(Fig. 4a). In the experiments, the medium gain H(0) =
exp(Fmin) is compensated by a non-dispersive attenuation
and the complete system has a peak gain P

P = exp(Fmax − Fmin). (36)

By combining equation (32) and equation (35), its transfer
function is easily expressed as a function of the dimension-
less frequency u and of the parameters a, ∆ and G

H ′(u) = exp[Γ (u) − Fmin)] = exp
[
iua

N(u)
Q(u)

]
(37)
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with

N(u) = 1 − iua

2G

(
∆2 + 1

)2
(∆2 − 1)2

(38)

Q(u) = 1 +
iua

G

(
∆2 + 1

)
(∆2 − 1)

+
(iua)2

4G2

(
∆2 + 1

)3
(∆2 − 1)2

· (39)

By expanding H ′(u) to the 2nd order in u, one gets the 2nd
order distortion parameter ε

ε =

(
∆2 + 1

) (
3∆2 − 1

)
G (∆2 − 1)2

a2 (40)

and the system peak-gain may be rewritten under a form
similar to that obtained in the single-line case

P = exp
(

2a2

ε
r(∆)

)
(41)

with

r(∆) =

(
∆2 + 1

) (
3∆2 − 1

)
(∆2 − 1)2

(
∆ +

√
∆2 + 1

4∆
− 1

∆2 + 1

)
.

(42)
Equation (40) shows that the 2nd order distortion never
cancels when there is a pulse advancement (∆ > 1). The
gain-line eG and the system peak-gain P required to attain
a given relative advancement a for a fixed value of ε are
decreasing functions of ∆. Both tend to exp(3a2/ε) for
∆ � 1, that is when the two components of the doublet
are well separated.

The equations linking the peak gain P , the relative
advancement a and the 2nd order distortion parameter ε
in the single absorption-line scheme (Eq. (31)) and in
the gain-doublet arrangement (Eqs. (41, 42)) are exact
but they are only meaningful if the 2nd order distortion
constitutes a good approximation of the exact distortion.
In fact the condition ε � 1 is not always sufficient. To
clarify this point, we again consider the case of Gaus-
sian pulses. If the 2nd order approximation is valid, the
uniform-norm and rms distortions are D∞≈ D

(2)
∞ = ε and

Drms ≈ D
(2)
rms = ε

√
3/2 respectively (see Sect. 2.2). There

is no problem with the single absorption-line arrangement.
It has indeed be proven [18] that, if ε < 1/2,

D∞ <
ε

1 − 2ε
(43)

D∞ is actually very close to ε when ε � 1. With
the parameters of the experiment described in Section 3
(a = 0.42, ε = 0.067), equation (43) leads to D∞ <
1.15ε and a numerical simulation shows that D∞ =
1.09ε = 0.073. This means that the 2nd order approx-
imation reproduces the exact solution with a precision
better than 0.6%. With the gain-doublet arrangement on
the contrary, large discrepancies appear when the separa-
tion of the two lines is large (∆ � 1). Due to the lack of
an inequality comparable to equation (43), it is useful to
examine the higher order terms in the expansion of the
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Fig. 5. Gain doublet arrangement. Numerical evidence of the
extra-distortion occurring for a large doublet splitting. The
envelope of the output field (full line) departs from the result
obtained in the 2nd order approximation (dotted line) by a
strong oscillation. The time unit is τp, the half width at 1/e of
the envelope of the Gaussian incident pulse. The parameters
are ∆ = 7, G = 8.34 and γτp = 0.763, resulting in a = 0.42
and ε = 0.067. The insert displays the spectral profile of the
system amplitude-gain |H ′(u)|. The frequency unit is 1/γp.

transfer function (see Eq. (19)). From equations (37–39),
one easily obtains the coefficient of the 3rd power term

D3 = −
(
∆2 + 1

)2 (
∆4 − 6∆2 + 1

)
4G2 (∆2 − 1)3

· (44)

We incidentally remark that the 3rd order distortion can-
cels out (D3 = 0) for ∆ = 1 +

√
2 and that the corre-

sponding curve A(Ω), intermediate between those shown
Figure 4, is flat-topped in Ω = 0 where d2A/dΩ2 =
d3ϕ/dΩ3 ∼ D3. Numerical simulations show that the 2nd
order approximation is satisfactory for ε � 1 when ∆ is
smaller than or comparable to this value 1 +

√
2 (say up

to ∆ = 4). If on the contrary ∆ � 1, equation (44) shows
that D3 is proportional to ∆2 and, more generally, one can
deduce from equations (37–39) that D2n+1 and D2n+2 are
proportional to ∆2n for n > 0. Even for small ε, the ex-
pansion of E′(L, θ) given by equation (20) then fails to
converge. A numerical calculation achieved for ∆ = 7,
a = 0.42 and ε = 0.067, shows that D∞ = 80% and
Drms = 155%, instead of 6.7% and 5.8% in the 2nd order
approximation. The large ratio Drms/D∞ (close to 2) indi-
cates an extended distortion. The extra-distortion in fact
consists of an oscillation at a frequency equal to the half-
separation of the two components of the gain-doublet (see
Fig. 5). The relative amplitude of the Fourier spectrum of
the incident pulse is small at the frequencies of the two
lines (≈ 8 × 10−4) but, on account of the corresponding
gain (P > 3 000), is indeed sufficient to excite transient
oscillations at the eigenfrequencies of these narrow-band
amplifiers. This interpretation is confirmed by the values
of the rise and fall times of the oscillations, roughly equal
to the inverse of the half-width at half-maximum of each
peak in the system gain (see insert in Fig. 5). The phe-
nomenon is especially apparent for large ∆ because the
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Fig. 6. Gain-doublet arrangement. Line amplitude-gain eG

and peak amplitude-gain P required to attain a = 0.42 with
D∞ = 0.073, as functions of the doublet-splitting parameter
∆ (full lines). The dotted lines show the analytical result ob-
tained when this is the 2nd order distortion (instead of the
exact distortion) which is fixed to 0.073.

advancement in absolute value A decreases when ∆ in-
creases (see Eq. (35) and compare Figs. 4a and 4b) and it
is necessary for keeping the same relative advancement a
to reduce the duration τp of the pulse. Its spectrum then
takes non-negligible amplitudes at the lines frequencies
and the oscillations previously described occur. From this
viewpoint, the Gaussian pulses are privileged by the rapid
fall of the wings of their spectrum. More dramatic effects
are expected with other analytic pulses (e.g. sech-pulses)
and, a fortiori, with pulses whose envelope present singu-
larities (even slight).

Due to the extra-distortion, the line-gain eG and the
system peak-gain P required to attain a given advance-
ment a with a fixed distortion D∞ do not take their min-
imum values for ∆ � 1, as it would occur if the 2nd
order distortion would dominate (see Eqs. (40–42)), but
for intermediate values of ∆. Figure 6 shows the result of
a numerical research of these minimums when a and D∞
have the same values as in the reference single-line experi-
ment, respectively 0.42 and 0.073. The minimum occurs at
∆ ≈ 3.5 for the system peak-gain and at ∆ ≈ 4.2 for the
line-gain. The corresponding values of ε (see Eq. (40)) are
respectively 0.061 and 0.059, not far below the exact dis-
tortion D∞ (0.073). The main part of the distortion then
originates from the 2nd order term. However, the line-gain
and the system peak-gain are very sensitive to the refer-
ence distortion and largely exceed the analytical values
obtained by taking ε = D∞ (see dotted lines in Fig. 6).
An important point is that the minimum of the peak-gain
(≈1.2× 104) is considerably larger than the peak-gain re-
quired in the single absorption-line arrangement (≈190)
to attain the same advancement a with the same distor-
tion D∞. This result is in full agreement with our anal-
ysis of equation (13). In the single absorption-line case,
F (Ω) > F (0) whatever Ω is (see dotted line in Fig. 2)
and all the frequencies contribute to the advancement.
Conversely, the spectral regions where F (Ω) < F (0) in
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Fig. 7. Level schemes used to achieve a gain doublet in a
vapour of caesium (left) and of potassium 39 (right). For sake
of visibility, the figures are not drawn to scale and only the
most relevant levels are shown. The dotted lines indicate the
virtual levels induced by the Raman pumps R1 and R2.
The symbols (σ+, σ−) and (↑, →) specify the polarisation of
the different light-beams.

the gain-doublet scheme (see Fig. 4) give a negative con-
tribution to the advancement (Eq. (15)) which should be
compensated by a correlative increase of the peak gain.
All these results are confirmed by simulations made for
other values of a and D∞.

Dogariu, Kuzmich and Wang [7,8] have achieved
the first experiment with a gain-doublet arrangement
in the near infrared. Their medium is an atomic cae-
sium (Cs) vapour (L = 6 cm) and the gain-doublet is
obtained by a Raman technique. Figure 7 (left part)
shows the relevant energy levels. The Cs atoms are
protected against the Earth’s magnetic field by a suit-
able shield and submitted to a uniform magnetic field
(∼ 10−4 T) parallel to the light propagation direction,
serving the purpose of removing the Zeeman degener-
acy. Two cw lasers are used to optically pump almost
the Cs atoms in the ground-state hyperfine level |1〉 =∣∣6S1/2, F = 4, m = −4

〉
and to empty the final state of

the Raman transition |2〉 =
∣∣6S1/2, F = 4, m = −2

〉
. The

Raman pumping is achieved by two cw beams R1 and R2

of frequencies ω′
1 and ω′

2, both right-hand circularly po-
larised and detuned to the red of the transition |1〉 −→ |0〉.
The probe beam is left-hand polarised. If only one beam
Rn (n = 1 or 2) is applied, a maximum of gain is ob-
tained at the probe frequency ωn such that (ω′

n − ωn)
coincides with the frequency of the forbidden transition
|2〉 −→ |1〉 (condition of 2-photon resonance). The pump
and probe fields propagating in the same direction and the
frequency differences (ω′

n − ωn) being very small, there is a
nearly exact compensation of the Doppler effect. When the
two beams are present, one obtains the expected double-
humped gain profile (see Fig. 4). To demonstrate nega-
tive group velocity propagation, Dogariu et al. make use
of near Gaussian probe-pulses and compare the intensity
profile of the output pulse to that obtained when the work-
ing frequency is shifted far from resonance. Note inciden-
tally that an intensity-detection, owing to its non-linear
character, may conceal defects present in the pedestal of
the field envelope. The parameters of a typical experiment
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[8] are τI
p = 2.4 µs (that is τp = 2.04 µs), G = 0.7,

γ/2π = 0.45 MHz and (ω′
2 − ω′

1) /2π = (ω2 − ω1) /2π =
2.8 MHz (∆ = 3.1). By changing i in −i in the complex ex-
pressions (different convention in the complex notations)
and taking into account that the frequencies considered
throughout the present paper are angular frequencies, the
expressions given by Dogariu et al. for the complex suscep-
tibility, the pulse-advancement and the 2nd order pulse-
distortion are strictly equivalent to ours, their parame-
ter M being linked to G by the relation M = cγG/πω0L.
Applying these results to the experiment under consider-
ation, we find a pulse-advancement A ≈ 38 ns, a 2nd or-
der distortion parameter ε ≈ 0.002, a gain-factor contrast
Fmax/F (0) ≈ 5.5 and a separation of the gain maximums
2Ωmax/2π ≈ 2.8 MHz (see Eq. (33)), whereas their experi-
mental values (see Figs. 5 and 6 in [8] and our Eq. (27)) are
respectively 63 ns, 0.01, 3.0 and 2.5 MHz. We attribute the
differences to inhomogeneous effects affecting in particu-
lar the relaxation rate γ. In order to achieve an efficient
Raman pumping, the frequencies of the beams Rn are in-
deed not far from that of the transition |1〉 −→ |0〉 (detun-
ing comparable to the Doppler linewidth). The effective
detuning (detuning in the atom frame) and thus the re-
laxation rate γ then depends on the atom velocity. Equal
to the transit time broadening γt (γt/2π ≈ 0.35 MHz)
for large detuning, the relaxation rate may approach the
excited-state decay rate γe (γe/2π ≈ 5.3 MHz) for the
atoms closer to resonance. The resulting spreading of
the splitting parameter ∆ (∆ ∼ 1/γ), which takes in par-
ticular values smaller than 3.1, explains both the reduction
of the contrast and of the separation of the maximums in
the gain profile and the increase of the advancement and of
the distortion. The overlapping of the Doppler profile with
the frequencies of the beams R1 and R2 has an important
other consequence. There indeed exist atoms whose veloc-
ity is such that they are on resonance or quasi-resonance
with R1 and/or R2. The Raman pumping then tends to
deplete the level |1〉 and thus oppose to the optical pump-
ing. According to Dogariu et al. [8], the atoms reversely
pumped away in these velocity groups act like a broadband
weak absorber that helps to compensate the residual gain.
In fact, the absorption overcompensates the gain and the
intensity-transmittance of the probe pulse is only 40%.
Let us recall that the same relative pulse-advancement for
a same level of distortion would be obtained with a 70%
transmittance in the single absorption-line arrangement
(see Sect. 2).

In the experiments of Dogariu et al., the pulse advance-
ments A are much larger than the luminal transit time
(L/c = 0.2 ns) but they keep quite modest with respect
to the pulse width (see Fig. 4 in [7] and Fig. 6 in [8]). The
relative advancement a is only a few percents. As shown
in detail in our theoretical study, this is the consequence
of the small values of the line gain-factor (G ≈ 0.7) and
of the system peak-gain (P ≈ 1.5). Gauthier and Stenner
recently achieved experiments involving larger gains [9].
Their arrangement is similar to the previous one. The
medium is an atomic vapour of potassium 39 (39K) whose
relevant energy levels are shown Figure 7 (right). The

states concerned by the Raman transition are the states
|gu〉 =

∣∣42S1/2, F = 2
〉

and |gl〉 =
∣∣42S1/2, F = 1

〉
. A spe-

cific feature of their experiment is that the Raman pumps
R1 and R2 also achieve the optical pumping. For this pur-
pose, they are both detuned to the blue of the D1 line of
39K. Because their frequencies are closer to resonance with
the transitions starting from the lower ground state |gl〉,
the population is preferentially pumped out of this state
and into the upper ground state |gu〉. Thanks to this ar-
rangement, intense Raman pumps can be used without
risk of depopulating the state |gu〉 and high probe gains
become possible. Again the gain occurs when the condi-
tion of 2-photon resonance is fulfilled, that is at probe
frequencies greater than the pumps frequencies by about
the ground state splitting (∆ωg/2π ≈ 460 MHz). The pa-
rameters of a typical experiment [9,23] are gL ≈ 9.5 that
is G ≈ 4.75, (ω′

2 − ω′
1) ≈ 24 MHz and ∆ ≈ 2.41. We de-

rive from these data 1/γ ≈ 31 ns, eG ≈ 116, H(0) ≈ 5
and P ≈ 28. The incident probe-pulse is flat-topped with
τI
p ≈ 184 ns and the intensity profiles of the output pulses

with and without potassium in the cell are directly com-
pared. Gauthier and Stenner observed that the output
pulse is then composed of a number of short pulses (7 are
clearly visible), with a distance between two successive
pulses of about 42 ns, very close to 2π/ (ω′

2 − ω′
1). The

phenomenon is interpreted in terms of four-wave mix-
ing. In this process, the combination of the pump fre-
quencies ω′

1 and ω′
2 with the probe frequency ω gener-

ates at the lowest order in the probe field a comb made
of the frequencies ω + n (ω′

2 − ω′
1), which leads to the ob-

served temporal structure. The new frequencies (n = 0)
and the original frequency ω exponentially grow but the
former start out with zero intensity. Their intensity keeps
small when the gain of the medium is modest as in the
experiments of Dogariu et al. [7,8]. Their effect is then
negligible and the linear theory applies. Conversely, the
sidebands play a prominent role when the gain is large
(as required to attain significant pulse-advancements) and
originate the pulse splitting experimentally evidenced by
Gauthier and Stenner. The phenomenon, interesting from
the viewpoint of nonlinear optics, obviously condemns
the bichromatic pumping in the context of the present
study because it leads to a large pulse reshaping. A gain-
doublet can fortunately be created without generation
of sidebands by using a monochromatic Raman pump-
ing and a level-scheme involving a doublet of final states.
The response of the medium is then correctly described
by our purely linear theory (Eq. (32)) whatever the gain
is. Figure 8 shows the output-pulse profiles, which would
be obtained in conditions identical to those of Gauthier
and Stenner. The incident field envelope is suitably mod-
elled by an hyperGaussian function exp

(−t4/τ4
p

)
with

τp = (8 ln 2)−1/4
τI
p ≈ 120 ns. The oscillations pointed out

in the analysis of the higher order distortion (see Fig. 5)
now appear in the output field envelope for a moderate
value of ∆ and occur both after and during the incident
pulse. The uniform norm and rms distortions are respec-
tively D∞ ≈ 41% and Drms ≈ 33%. The modulation of
the output field appearing in our fully linear model should
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Fig. 8. Envelope of the output field (full line) numerically
obtained with the parameters of the experiment of Gauthier
and Stenner [9]. The envelope of the pulse having propagated
in vacuum is given for reference (dotted line). The time unit is
τp, the half width at 1/e of the amplitude-profile of the incident
pulse and a = 0.25. The intensity-profiles shown in the insert
illustrate the effects of a quadratic detection (exaggeration of
the oscillations close to the maximum, considerable reduction
of the amplitude of the post-oscillations and doubling of their
frequency).

be carefully distinguished from that resulting from four
waves mixing in the experiment of Gauthier and Sten-
ner. It is nearly sinusoidal (not pulsed), its period is twice
as long and, above all, it can be suppressed by using long
enough incident pulses. The oscillations are in fact excited
by the steep rise and fall of the incident-pulse envelope.
They disappear when a Gaussian pulse of same duration
τp is used in place of the flat-topped incident pulse and
the distortions become then quite reasonable (D∞ ≈ 7.6%
and Drms ≈ 6.3%), close to their 2nd order values (D(2)

∞
= ε ≈ 6.4% and D

(2)
rms ≈ 5.5%). Incidentally, our simu-

lations show the great sensitivity of the distortion to the
shape of the incident pulse. When the distortion is as large
as that shown Figure 8, the location of the pulse-maximum
is not really meaningful but our analytic expression of the
pulse-advancement (Eq. (35)) keeps exact for the centre
of gravity of the pulse-envelope (see Eq. (17)).

5 Alternative arrangements

The main obstacle to the experimental evidence of sig-
nificant pulse-advancements with moderate distortion lies
in the catastrophic peak-values attained by the gain of
the corresponding systems. Large gains at certain frequen-
cies indeed result in a hypersensitivity of the experiments
to unavoidable slight defects in the incident pulse-profile
(see Fig. 3) and raise serious problems of noise and of in-
stability. In optical systems, the transmitted probe-pulse
may in particular be completely obscured by the ampli-
fied spontaneous emission [9] or undesired laser effects [22].
This entails that, among the systems achieving in princi-
ple the same relative advancement a with the same distor-
tion D∞, those having the smallest peak-gain P are the
most suitable for real experiments. Alternatively, one may

consider that, if P is fixed, the most efficient systems are
those leading to the lowest distortion for a given advance-
ment or to the largest advancement for a given distortion.
We have pointed out in the previous section that, from
this viewpoint, the single absorption-line arrangement is
much more efficient than the gain-doublet arrangement.
We show in the present section that its efficiency can be
equaled in an amplifying medium whose gain falls to zero
at the working frequency and which is thus purely trans-
parent at this frequency (“gain-zero arrangement”). We
then study the possibility of attaining larger efficiencies
with an absorption-doublet arrangement when the 2nd or-
der distortion cancels. We finally discuss the opportunity
of developing more complex arrangements in order to can-
cel the distortion beyond the 2nd order.

5.1 Gain-zero arrangement

In the experiments analysed in Sections 3 and 4, the sys-
tems comprise an element exterior to the medium serving
the purpose of compensating the absorption [4,5,7,8] or
the gain [9] of the medium at the centre of the incident-
pulse spectrum. In fact the function of this extra element
can be ensured by the medium itself. It suffices in princi-
ple to use an amplifying medium with a dip in its gain-
profile where the gain falls to zero. The medium is then
purely transparent (neither amplifying nor absorbing) at
this frequency which is obviously taken as working fre-
quency. This could be achieved, e.g., in a monochromat-
ically driven Raman amplifier with a level scheme such
that destructive quantum interferences cancel the gain at
a particular frequency [24].

The previous situation is conveniently modelled by as-
sociating a gain-line and an absorption line having the
same frequency and gain modulus but different widths.
The complex gain-factor of the medium then reads

Γ (Ω) = F (Ω) + iϕ(Ω) = − Z

1 + iΩ/γ
+

Z

1 + iβΩ/γ
(45)

where β is the ratio of the widths of the absorption and
gain lines (β < 1). The profile of the gain-factor F (Ω)
has a zero minimum at Ω = 0 and two absolute maxi-
mums at Ω = ±γ/

√
β. The amplitude Fmax of the latter

and the peak gain P of the system (here reduced to the
medium) are

Fmax = Z
1 − β

1 + β
P = exp(Fmax). (46)

The pulse advancement is simply the difference of the ad-
vancement Z/γ due to absorption-line and of the delay
βZ/γ due to the gain-line

A =
Z

γ
(1 − β) . (47)

By combining equations (45–47), the transfer function
of the system can be expressed as a function of the
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dimensionless quantities u, a, P and β. One gets

H ′(u) = H(u)

= eiua exp

(
− (iua)2 / ln P + β (iua)3 / (1 + β)2 ln2 P

1 + iua/ lnP + β (iua)2 / (1 + β)2 ln2 P

)
·

(48)

A power series expansion of the 2nd exponential gives

H ′(u) = eiua

×
(

1 − (iua)2

ln P
+

(iua)3

ln2 P

1 + β + β2

1 + 2β + β2
+ O

(
u4a4

))
.

(49)

As expected, the transfer function obtained for the sin-
gle absorption line arrangement (Eq. (30)) is retrieved by
putting lnP = Z and β = 0 in equation (48). At the
2nd order, the distortion does not depend on β and the
relation between P , a and ε established for (Eq. (31)) is
valid whatever β is. This means that, in the low distortion
limit, the gain-zero arrangement (0 < β < 1) is as efficient
as the single absorption-line arrangement (β = 0). The
3rd order contribution to the distortion is even slightly
lower when β = 0 (see Eq. (49)) and numerical simula-
tions show that the exact distortions obtained with both
arrangements for the same values of P and a are very close
in all the cases of practical interest. For P = 190, a = 0.42
and β = 0.2, we find in particular D∞ = 7.34% instead
of 7.30% with the single absorption-line arrangement.

5.2 Absorption-doublet arrangement

In all the systems considered up to now, the distortion of
the pulse-envelope mainly result from the 2nd order term
when it keeps small. One may reasonably expect to attain
a better efficiency when this term cancels. This occurs in
the gain-doublet arrangement for ∆ = 1/

√
3 (see Eq. (40))

but the output-pulse is then delayed with respect to the in-
cident one (A = −3G/4γ, see Eq. (35)). Conversely there
is advancement in the absorption-doublet arrangement
(G = −Z). The gain-factor F (Ω) of the medium then dis-
plays a unique flat minimum at Ω = 0 (F (0) = −3Z/2)
and is maximum at infinity (F (±∞) = 0). The peak gain
of the system is P = exp(3Z/2) and the transfer function
of the system (see Eqs. (37–39)) may be written

H ′(u) = eiua exp

(
− 3 (iua)3 / ln2 P

1 + 3iua/ lnP + 3 (iua)2 / ln2 P

)
·

(50)
At the lowest order of distortion, the transfer function and
the output signal become

H ′(u) = eiua

(
1 − 3 (iua)3

ln2 P
+ O

(
u4a4

))
(51)

E′(L, θ) ≈ E(0, θ + a) − 3a3

ln2 P

d3E(0, θ + a)
dθ3

· (52)

When the incident pulse is bell-shaped, the (odd) distor-
tion term originates a reduction of the pulse-advancement,
a shortening of the pulse rise and a lengthening of its fall.
These effects obviously keep small in the low distortion
limit. In this limit D∞ reads

D∞ ≈ D(3)
∞ =

3a3

ln2 P

∥∥∥∥d3E(0, θ)
dθ3

∥∥∥∥
∞

=
11.7a3

ln2 P
(53)

where the last expression is obtained in the case of Gaus-
sian pulses. The approximate distortion given by equa-
tion (53) is in surprising good agreement with the exact
distortion. Fixing D

(3)
∞ = 7.3%, we indeed verified that

the exact distortion keeps in the range 6.6–8.2% when P
(resp. a) varies from 10 to 105 (resp. from 0.32 to 0.94). As
expected, the present arrangement is more efficient than
those previously considered. The advancement a = 0.42
with a distortion D∞ = 7.3% is in particular attained
for P ≈ 30 instead of 190 in the single absorption-line ar-
rangement and 1.2×104 in the gain-doublet arrangement.

An other advantage of the absorption doublet arrange-
ment is that it keeps relatively simple and open to an
experimental realisation. Depending on the experiment,
the parameter ∆ can be brought to the value 1/

√
3 by

adjusting either the line splitting (ω2 − ω1) or the line
broadening γ. The peak-gain P and the advancement a
being given, the pulse duration τp is determined by the
value of γ (τp = ln P/2γa) and is about 4/γ for the pre-
vious values of P and a (resp. 30 and 0.42). This dura-
tion should obviously be long enough in order to facilitate
the shaping of the incident pulse and the real-time obser-
vation of the output signal. Favourable time-scales (say
τp > 100 ns) can in particular be obtained at millime-
tre and optical wavelengths. The microwave experiment
could be achieved on a gas of methyl fluoride with a de-
vice similar to that described in [5] and in Section 3. The
rotation transitions |J = 1, K = 0〉 → |J = 2, K = 0〉 and
|J = 1, |K| = 1〉 → |J = 2, |K| = 1〉 of this symmetric top
molecule lie at a wavelength λ ≈ 3 mm and their fre-
quencies differ by about 1.1 × 107 Rad/s owing to the
centrifugal distortion [25]. Since the relaxation is mainly
determined by the intermolecular collisions, ∆ is simply
brought to 1/

√
3 by adjusting the gas pressure in order

that γ =
√

3
2 (ω2 − ω1) ≈ 107 Rad/s. With the previous

parameters, this leads to a pulse-duration τp ≈ 400 ns. In
the optical domain, comparable time scales would be at-
tained in a cloud of cold atoms [26]. We suggest to use 39K
potassium atoms and to retain the line

∣∣2S1/2, F = 1
〉 →∣∣2P3/2, F = 1

〉
, easily split by a magnetic field. The line-

width γ is fixed by the lifetime τe of the excited state (γ =
1/2τe with τe ≈ 26 ns) and this is the line splitting which
is now adjusted by means of the magnetic field in order to
bring ∆ to 1/

√
3. For P = 30 and a = 0.42, this leads to a

pulse duration τp ≈ 4/γ ≈ 8τe ≈ 200 ns. Experiments are
also feasible on a low-pressure gas in the infrared domain
(λ ≈ 10 µm) where numerous molecules present suitable
rotation-vibration lines. The pulse-duration, then fixed by
the Doppler broadening, would be one order of magnitude
shorter than in the above proposals.
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5.3 Extension to several doublets

We now consider the more general situation where r gain
or absorption doublets, differing only by their gain Gk and
their line-splitting parameter ∆k, are involved in the dis-
persion mechanism. Each additional doublet provide two
new degrees of freedom and the use of r doublets allows us
in principle to cancel the distortion up to the order 2r, the
first term different from zero being that of order n = 2r+1.
This way of search of the “ideal medium” is somewhat
similar to the Butterworth procedure used in the design
of analog filter [27]. Note however that the amplitude and
the phase of the transfer function are taken into account
in our approach whereas only the amplitude transmission
is optimised in the Butterworth procedure.

By introducing the parameter s = 1/γτp (further re-
lated to the relative pulse-advancement a) and the angles
Ψk = Arg(1+i∆k), the complex gain-factor of the medium
may be expanded under the form

Γ (u) =
r∑

k=1

(
Gk

1 + i∆k + isu
+

Gk

1 − i∆k + isu

)

=
∞∑

n=0

Cn (isu)n (54)

where

Cn = 2 (−1)n
r∑

k=1

Gk (cosΨk)n+1 cos [(n + 1)Ψk] . (55)

C0 and sC1 are respectively equal to the real gain-factor
of the medium at the working frequency (u = 0) and
to the relative pulse-advancement a. The distortion orig-
inates from the terms of index n ≥ 2. By imposing that
the distortion is zero up to the order 2r, i.e. that Cn = 0
for every n ranging from 2 to 2r, one obtains a system of
(2r − 1) equations, homogeneous and linear with respect
to the Gk. Taking into account that 0 ≤ Ψk ≤ π/2 (∆k

positive and finite), the solution to this system is

Ψk =
2k − 1
2r + 1

π

2
(56)

G1 cos2 Ψ1 = G2 cos2 Ψ2 = · · · = Gr cos2 Ψr = G0 (57)

where G0 is a parameter independent of k. Since cos2 Ψr =
1/
(
1 + ∆2

k

)
, equation (57) shows that all the doublets

equally contribute to the gain at the working frequency
(u = 0). The pulse-advancement is easily derived from
equations (55–57). One gets

a = sC1 = −2sG0

r∑
k=1

cos (2Ψk) = −sG0. (58)

There is advancement only if G0 is negative, that is if all
the doublets are absorption-doublets. In this case Fmax =
F (±∞) = 0 and the peak-gain P of the system is such
that

ln P = −F (0) = −C0 = −2
r∑

k=1

Gk cos2 Ψk = −2rG0.

(59)
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Fig. 9. Profiles of the system gain |H ′(u)| for different arrange-
ments but the same values of the peak-gain and of the relative
pulse-advancements (P = 190 and a = 0.42). The curves gd, 0,
1, 2, 3 and 4 respectively correspond to the arrangements in-
volving a gain doublet (∆ = 3.5), a single absorption-line, one,
two, three and four optimised absorption-doublets. The nor-
malised spectrum exp(−u2/4) of the incident pulse (assumed
to be Gaussian) is given for reference (lower isolated curve).

The parameters G0 and s are simply related to P and a
(G0 = − lnP/2r, s = −a/G0 = 2ra/ ln P ) and the trans-
fer function of the system may finally be expressed under
a general form involving the number r of doublets, the
peak-gain P of the system and the relative advancement a

H ′(u) = P exp

{
− ln P

2r

r∑
k=1

(
1 + ∆2

k

1 + i∆k + iua (2r/ lnP )

+
1 + ∆2

k

1 − i∆k + iua (2r/ ln P )

)}
(60)

where

∆k = tan Ψk = tan
(

2k − 1
2r + 1

π

2

)
. (61)

Figure 9 shows the gain profiles |H ′(u)| obtained for the
same values of P and a with 1, 2, 3 or 4 optimised ab-
sorption doublets. The gain-profiles corresponding to the
single absorption-line and gain-doublet arrangements are
given for comparison. As expected, the gain-profile in the
vicinity of the working frequency is flatter (resp. much
flatter) with the absorption-doublet (r = 1) than with
a single absorption-line (resp. a gain-doublet). However,
the improvement obtained by increasing the number of
absorption-doublets, if it exists, is not well marked. This
is not really a surprise since a too flat transmission curve
may lead to a reduction of the 1st order dispersion, respon-
sible of the pulse-advancement, and we are comparing the
different systems for a same value of this advancement.
A more precise comparison of the different arrangements
obviously requires a direct examination of the distortion.
In the case of r optimised absorption-doublets, the lowest
order contribution to the distortion arises from the term
of degree (2r+1) in u and, at this order of approximation,
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the transfer function of the system and the output signal
may be written under forms analogous to those given by
equations (19, 20) in the general analysis

H ′(u) ≈ eiua
(
1 + D2r+1 (iua)2r+1

)
(62)

E′(L, θ) ≈ E(0, θ + a) + D2r+1a
2r+1 d2r+1

dθ2r+1
[E(0, θ + a)]

(63)

with

D2r+1 =
( s

a

)2r+1

C2r+1

=
(

2r

ln P

)2r r∑
k=1

2 cos2r Ψk cos [(2r + 2)Ψk] . (64)

At the lowest order, the uniform norm distortion reads

D(2r+1)
∞ = D2r+1a

2r+1

∥∥∥∥ d2r+1

dθ2r+1
E(0, θ)

∥∥∥∥
∞

=
( µr

ln P

)2r

a2r+1 (65)

where µr is a numerical coefficient depending on the
number r of doublets and on the shape of the envelope
E(0, θ) of the incident pulse. For Gaussian pulses, we
get µ1 = 3.42 (in agreement with Eq. (53)), µ2 = 7.15,
µ3 = 11.3 and µ4 = 15.8. The general expression of the
coefficients Cn (see Eq. (55)) allows us to determine the
contributions to the distortion of order n > 2r+1. As one
might fear, some of these contributions are far from being
negligible even when D

(2r+1)
∞ is small. For the largest val-

ues of r, they may even dramatically exceed that of order
(2r + 1). In these conditions the uniform norm distortion
derived from this only term (Eq. (65)) is not representative
of the exact distortion. The case of a single absorption-
doublet constitutes a noticeable exception. The distortions
of order 3 and 4 clearly prevail over those of higher order.
The 4th order distortion is only slightly smaller than the
3rd order one but it occurs in a different region of the
pulse-envelope. This explains why D

(3)
∞ actually provides

a good approximation of D∞, as noted in the previous
subsection.

The above considerations naturally led us to proceed
to numerical calculations of the distortion. More exactly,
the relative advancement a being given, we determined
for each arrangement the system peak-gain P for which
D∞ attains an a priori fixed level of distortion. Figure 10
displays the curves P (a) obtained for D∞ = 7.3% and
a ranging from 0.1 to 1. In agreement with the classifi-
cation of the different arrangements previously made on
the basis of the gain-profiles (Fig. 9), the curves of Fig-
ure 10 confirm that the arrangements involving 1, 2 and
4 absorption doublets have nearly equal efficiencies (in
the sense given to this word in the beginning of this sec-
tion). The curve corresponding to 3 absorption-doublets
(not shown for sake of clarity) lies between those obtained
for r = 2 and r = 4. For the level of distortion considered,
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Fig. 10. System peak-gain P (logarithmic scale) as a func-
tion of the relative pulse-advancement a for D∞ = 7.3%. The
meaning of the symbols is as in Figure 9.

the arrangement involving one absorption doublet (full
line) is the most efficient up to a = 0.6 and this advance-
ment is obtained for an amplitude peak-gain P ≈ 400.
Very large values of P are excluded in real experiments
owing to the already mentioned problems of noise, insta-
bility and spurious signals whose importance increases in
proportion to the gain. Imperceptible defects in the en-
velope of the incident pulse may in particular generate
transients (wiggles) obscuring the expected output pulse
for very large gains. Wiggles of moderate amplitude have
been observed for P ≈ 190 (see Fig. 3) despite of the care
taken in the pulse shaping [5]. Even if further improve-
ments in the pulse shaping are possible, this phenomenon
limits P to a value that one may optimistically estimate
to 104 (80 dB). This fixes the upper bound of the rela-
tive advancement a to about 0.8. For 0.6 < a < 0.8, the
single absorption-doublet arrangement is very slightly less
efficient than its 2-doublets counterpart whose implemen-
tation is much more complex. For a practical application,
the single absorption-doublet scheme may thus be consid-
ered as the best one in the whole domain 0.1 < a < 0.8.
As indicated before, equation (53) works in this range and
allows us to analyse the effects of the different parameters.
It shows that the advancement increases very slowly with
the peak-gain (as (ln P )2/3) and is not very sensitive to
the level of tolerated distortion (a ∝ D

1/3
∞ ) and to the ex-

act profile of the incident pulse (provided that it is ideally
smooth!). For example, an increase of the peak-gain from
104 to the unrealistic value 105 would result in an increase
of the advancement by only 16%. Conversely the advance-
ment is reduced by only 21% if the tolerated distortion is
reduced by half. For a same distortion, it decreases by only
17% if the Gaussian pulse is replaced by a sech-pulse of
same duration τp.

6 Summary and discussion

In this work we have studied in what conditions electro-
magnetic pulses can propagate at a negative group ve-
locity without significant change in their characteristics.
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The required anomalous dispersion is associated to nar-
row absorption and/or gain lines of the medium. A broad-
band amplifier or absorber should eventually complete the
latter in order to compensate the absorption or the am-
plification of the medium at the working frequency. The
transfer function of the global system is written in a fairly
general case and some important properties are derived
from it. The pulse-advancement is in particular related
to the spectral profile of the gain-factor and is shown to
be maximum when the working frequency corresponds to
a well-marked minimum of gain. The 1st order distortion
(mainly a frequency change) then cancels and the advance-
ment obtained at this order of approximation coincides
with that of the centre-of-gravity of the pulse-envelope
whatever the distortion is. The higher order distortion is
examined in this case and a special attention is paid to
the 2nd order contribution which prevails in most low-
distortion systems and whose main effect is a narrowing
of the pulse amplitude-profile by a factor close to unity
and its magnification by the same factor (area conser-
vation). Explicit expressions of the transfer function and
of the distortion are given for the experiments involving
a single absorption-line or a gain doublet. The uniform
norm distortion D∞ is expressed as a function of the rel-
ative pulse-advancement a (ratio of the advancement A
over the pulse width τp)2 and to the system peak-gain P
(which is nothing else that the ratio of the peak value of
the medium gain over its value at the working frequency).
The dimensionless character of all our expressions allows
us to simply analyse experiments made in quite differ-
ent domains. Surprisingly enough, the direct experimen-
tal evidences of significant pulse-advancements with low
distortion are very few and the most convincing keeps
that we achieved in 1985 with a single absorption-line ar-
rangement [5]. Insofar as our work has been overlooked
in most subsequent publications on the subject with few
exceptions [28,29], it is worth recalling that we obtained
a = 0.42 with D∞ < 7.3%. Conversely the pulse advance-
ment recently attained by Dogariu et al. [7,8] by using
a gain-doublet arrangement is modest (a = 0.03) and,
paradoxically enough, their results could be reproduced
in the single absorption-line arrangement with a better
transmittance of the medium. The present limits of the
gain-doublet experiments originate in that of the actually
usable gain. The required gain-profile is indeed created
by a bichromatic Raman pumping and four-wave mixing
processes originate a splitting of the transmitted probe
pulse (i.e. a considerable pulse-reshaping) as soon as the
line gain-factor G exceeds one [9]. We suggest overcoming
this difficulty by using a monochromatic instead of bichro-
matic Raman pumping and a level-scheme with a doublet
of final states.

As stated a long time ago by Garrett and McCumber
[3] and recalled in our introduction, the propagation of
light pulses at a negative velocity is not at odd with the
causality principle and the special relativity theory. The
phenomenon occurs only with ideally smooth pulses and it

2 Let us recall that in our notation τp is the half-width at
1/e of the amplitude profile of the incident pulse.

is irrelevant to make any correspondence between homol-
ogous points of the envelopes of the pulses entering and
leaving the medium. One may remark that Mother Na-
ture strongly resists to a breaking of its principles even
when this breaking is only apparent, as it is the case
here. The observation of significant pulse-advancements
with low distortion indeed involves systems whose gain,
equal to one at the working frequency, takes dramatically
large values at other frequencies. For example, the values
a = 0.42 and D∞ = 7.3% are attained for P = 190 and
P = 1.2×104, respectively with the single absorption-line
and gain-doublet arrangements. When the peak-gain P is
very large, the slightest defects in the envelope of the in-
cident pulse result in important parasitic signals at the
system output. Furthermore amplified spontaneous emis-
sion, instabilities or undesired laser effects may completely
obscure the transmitted pulse in optical systems (inde-
pendently of the above-mentioned problems associated to
a bichromatic pumping). One may thus consider that the
most efficient system is that having the smallest peak gain
for imposed values of a and D∞. From this viewpoint, the
single absorption-line arrangement is much more efficient
than the gain-doublet scheme. A comparable efficiency is
obtained with the arrangement involving a narrow dip in
a gain profile with the advantage of a perfect transparency
of the medium at the working frequency whatever the ad-
vancement is. A better efficiency is expected when the
2nd order distortion cancels. The simplest arrangement
complying with this condition consists of a doublet of
absorption-lines. The values a = 0.42 and D∞ = 7.3%
are then attained for a peak gain P = 30, actually much
smaller than with the previous arrangements. The distor-
tion can be cancelled up to the order 2r by using r ab-
sorption doublets. Disappointingly enough, this does not
lead to a significant increase of the efficiency. The (single)
absorption-doublet arrangement is even the most efficient
for P < 400. It is fairly simple and we propose different
schemes for its experimental implementation.

The limit imposed to the system peak-gain P in order
to prevent the pollution of the output pulse by undesired
signals determine the largest advancement which can be
attained for a given level of distortion. By very carefully
shaping the incident pulse and working at long enough
wavelength (in order to reduce the spontaneous emission),
one may optimistically expect to use systems with a peak
gain P = 104. Taking again D∞ = 7.3% as tolerated level
of distortion, we get a ≈ 0.8 with the absorption-doublet
arrangement. This value may be considered as an upper
limit of the relative advancement actually attainable in
a concrete experiment with nearly Gaussian pulses. Note
that relative advancements a of the order of 0.5 can be
attained for reasonable peak-gains (P < 100) but that a
further increase of the advancement is paid at a high price
in terms of gain.

Two general comments may be made about the prop-
agation of light pulses at a negative group velocity. We
first remark that the pulse-distortion mainly (or for an im-
portant part) originates in the variations of the medium
transmittance as a function of the frequency. The pulse
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shapes and advancements inferred from measurements
of the only dispersion-characteristics are thus quite dis-
putable. Second, the distortion does not depend on the
absolute value A of the pulse-advancement but only on its
relative value a. Since the distortion cancels for a → 0, it
is not a problem to conciliate low distortion with pulse-
advancements A large with respect to the luminal transit
time L/c. This is simply achieved by using lines of width
γ very small compared to αc or gc (as it is the case in all
the experiments discussed here) and long enough pulses.
The true challenge is obviously to attain advancements
comparable to the pulse-width.

The formalism developed in this paper is immediately
applicable to the study of ultraslow propagation of light
pulses in resonantly dispersive media. See the recent re-
view by Boyd and Gauthier [29]. It indeed suffices to
change the absorption or gain coefficients of the lines ap-
pearing in our expressions into their opposites to trans-
form advancements into delays. It is quite instructive to
compare the results obtained in each case for a same time-
shift of the pulse in modulus. We restrict the comparison
to the case of a single gain or absorption line. As a mat-
ter of fact, the experiments of ultraslow propagation have
been achieved with an arrangement involving a dip of sub-
natural width in a wide absorption-profile (atomic line).
This arrangement is the inverse of the gain-zero arrange-
ment considered in the present paper and is equivalent to
a single gain-line arrangement owing to the narrowness of
the dip. The main difference between the experiments at
slow and negative group velocity lies in the system peak-
gain P required in order to attain a significant time-shift
(relative pulse-delay or advancement). P is equal or close
to 1 in the first case whereas it takes large values origi-
nating the above-discussed experimental difficulties in the
second case. In the low distortion limit, the output signal
is described by the same equation (Eq. (25)) but the dis-
tortion parameter ε takes opposite values. The narrowing
and the magnification of the amplitude-profile of the pulse
obtained at negative group velocity now become a broad-
ening and attenuation by the same factor. This analytical
result is well reproduced by numerical simulations using
the transfer function associated to a single absorption-line
(Eq. (30)), Z being changed into −Z and a into −a. Such
numerical simulations allow us to explore the phenom-
ena occurring when the 2nd order approximation is no
more valid. For increasing values of |ε|, the distortion in-
creases much more slowly when the group velocity is sub-
luminal rather than negative. This is not surprising and,
roughly speaking, results from the alternated structure of
the power series expansion of the transfer function when
the propagation is subluminal. A calculation made with
the parameters of the experiment of Hau et al. [30] shows
that despite the large modulus of the distortion parame-
ter (ε ≈ −0.7), the output pulse keeps nearly Gaussian.
It is about twice as wide as the incident pulse, its peak
intensity is about four times smaller and the relative delay
is very close to the value derived from the 1st order ap-
proximation (a = −3.3). These theoretical results are in
satisfactory agreement with the experimental ones (see in

particular Fig. 3 in [30]). Conversely, the same calculation
in the case of a negative group velocity (ε = +0.7) shows
that the output pulse is completely distorted with an oscil-
latory structure and a peak-intensity fourteen larger than
that of the incident pulse. It is obviously meaningless to
speak of pulse-advancement in such conditions.

Finally the methods used in our study of the propaga-
tion of electromagnetic pulses at a negative group velocity
can easily be adapted to that of the (apparent) super-
luminal transmission of pulses through one-dimensional
systems with photonic gap. See the recent reviews by
Chiao and Steinberg [28] and by Nimtz and Heitman [31].
This problem is a subject per se and will be examined
in a forthcoming paper. However some preliminary re-
marks may be already made. First the waves involved
in these systems are not travelling waves and important
phenomena occur at the boundaries. Strictly speaking,
group velocity is not a relevant concept and it is prefer-
able to speak only of group delays. Second the group de-
lays are actually smaller than the luminal transmission
time but are never negative3 as in the systems consid-
ered in the present paper. Third the systems involving
a single barrier (e.g. a microwave waveguide with one
part under cut-off) have no minimums of transmission.
According to our general analysis, the pulse-distortion
then appears as early as at the 1st order of approxima-
tion and these systems are not suitable for the purpose of
attaining large pulse-advancements4 with low distortion.
On the contrary, such minimums of transmission exist in
the systems involving a stack of dielectric layers [28,31,
32], periodic fibre Bragg gratings [33] and double-barrier
photonic band-gaps [34,35]. The properties of these sys-
tems are analogous to those of the arrangement involv-
ing a single absorption-line, with a 2nd order distortion.
Significant relative advancements have been attained in
recent experiments involving direct observations in the
time-domain [32,33,35]. Suitable modifications of these
experiments would permit to cancel the 2nd order dis-
tortion as with the absorption-doublet arrangement con-
sidered in the present paper.

We thank D. Gauthier and M.Stenner for providing us details
about their experiments on a bichromatically driven Raman-
amplifier, W. Mecklenbraueker for useful indications on the lin-
ear systems theory and O. Ramaré for his help in some math-
ematical demonstrations. One of us (BM) would like to thank
J.C. Garreau for fruitful discussions about the optical pumping
and the Raman processes in atomic physics.

Note added in proof

The experiment involving electromagnetically induced ab-
sorption, proposed at the end of Section 3, has been suc-
cessfully achieved by Akulshin et al. [36]. In our notations,

3 As far as we know, this is true for all the experiments
achieved up to now but we are not aware of a general demon-
stration of this conjecture.

4 With respect to a pulse that would be transmitted at the
luminal velocity.
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the relative advancement and the uniform norm distortion
obtained in this experiment are respectively 10% and 3%.
Besides, negative group delays have been very recently
evidenced in the transmission of radiofrequency pulses
through a 1D photonic band gap structure [37]. The neg-
ative delays are attributed to significant losses in the sys-
tem. See also [38].
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18. B. Macke, J.L. Quéva, F. Rohart, B. Ségard, J. Phys. 48,
797 (1987)

19. J. Peatross, S.A. Glasgow, M. Ware, Phys. Rev. Lett. 84,
2370 (2000)

20. A. Katz, R.R. Alfano, Phys. Rev. Lett. 49, 1292 (1982)
21. S. Chu, S. Wong, Phys. Rev. Lett. 49, 1293 (1982)
22. A.M. Steinberg, R. Chiao, Phys. Rev. A 49, 2071 (1994)
23. D. Gauthier, M. Stenner, private communication
24. J.C. Garreau, Phys. Rev. A 61, 011401R (1999); private

communication
25. C.H. Townes, A.L. Schawlow, Microwave Spectroscopy

(Dover, New York), pp. 77-79 and 622
26. H.J. Metcalf, P. van der Straten, Laser Cooling and Trap-

ping (Springer, New York 1999), pp. 156-164 and 273-289
27. C. Gargour, R. Vandat, D. Bensoussan, Théories et Con-
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38. A. Haché, L. Poirier, Appl. Phys. Lett. 80, 518 (2002)


